Stieltjes polynomials and Lagrange interpolation

نویسندگان

  • Sven Ehrich
  • Giuseppe Mastroianni
چکیده

Bounds are proved for the Stieltjes polynomial En+1, and lower bounds are proved for the distances of consecutive zeros of the Stieltjes polynomials and the Legendre polynomials Pn. This sharpens a known interlacing result of Szegö. As a byproduct, bounds are obtained for the Geronimus polynomials Gn. Applying these results, convergence theorems are proved for the Lagrange interpolation process with respect to the zeros of En+1, and for the extended Lagrange interpolation process with respect to the zeros of PnEn+1 in the uniform and weighted Lp norms. The corresponding Lebesgue constants are of optimal order.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean convergence of Lagrange interpolation for Freud’s weights with application to product integration rules

The connection between convergence of product integration rules and mean convergence of Lagrange interpolation in L, (1 <p < 00) has been thoroughly analysed by Sloan and Smith [37]. Motivated by this connection, we investigate mean convergence of Lagrange interpolation at the zeros of orthogonal polynomials associated with Freud weights on R. Our results apply to the weights exp(-x”/2), m = 2,...

متن کامل

COMPOSITE INTERPOLATION METHOD AND THE CORRESPONDING DIFFERENTIATION MATRIX

Properties of the hybrid of block-pulse functions and Lagrange polynomials based on the Legendre-Gauss-type points are investigated and utilized to define the composite interpolation operator as an extension of the well-known Legendre interpolation operator. The uniqueness and interpolating properties are discussed and the corresponding differentiation matrix is also introduced. The appl...

متن کامل

Hermite and Hermite-Fejér interpolation for Stieltjes polynomials

Let wλ(x) := (1−x2)λ−1/2 and P (λ) n be the ultraspherical polynomials with respect to wλ(x). Then we denote by E (λ) n+1 the Stieltjes polynomials with respect to wλ(x) satisfying ∫ 1 −1 wλ(x)P (λ) n (x)E (λ) n+1(x)x dx { = 0, 0 ≤ m < n+ 1, = 0, m = n+ 1. In this paper, we show uniform convergence of the Hermite–Fejér interpolation polynomials Hn+1[·] and H2n+1[·] based on the zeros of the Sti...

متن کامل

Quantum Hermite Interpolation Polynomials

Abstract. The concept of Lagrange and Hermite interpolation polynomials can be generalized. The spectral basis of idempotents and nilpotents of a factor ring of polynomials provides a powerful framework for the expression of Lagrange and Hermite interpolation in 1, 2 and higher dimensional spaces. We give a new definition of quantum Lagrange and Hermite interpolation polynomials which works on ...

متن کامل

Bivariate Lagrange Interpolation at the Chebyshev Nodes

We discuss Lagrange interpolation on two sets of nodes in two dimensions where the coordinates of the nodes are Chebyshev points having either the same or opposite parity. We use a formula of Xu for Lagrange polynomials to obtain a general interpolation theorem for bivariate polynomials at either set of Chebyshev nodes. An extra term must be added to the interpolation formula to handle all poly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 66  شماره 

صفحات  -

تاریخ انتشار 1997